SPACE ATLAS of Lebanon
Project Team

This Atlas is a production of the Lebanese National Council for Scientific Research (CNRS-L) in Lebanon. It was prepared by a team led by Dr. Ghaleb Faour under the general guidance of Prof. Alwan Harb (Secretary General of the CNRS-L). Main contributors to or authors of the individual chapters are as follows:

Dr. Talal Darwish (Agriculture, soil, quarters), Director of the National Centre for Remote Sensing (NCRS)
Dr. Gaby Khalaf (Oil spill), Director of the National Centre for Marine Sciences (NCMS)
Dr. Chadi Abdallah (Mass movement), NCRS
Dr. Amin Shaban (Geology, snow), NCRS
Dr. Carla Khater (Protected areas), NCRS

The Chapters on Archaeology and Oceanography were provided by both:
Dr. Najad Kabbara from the NCMS

Comments on the individual chapters are provided by Samah Rislan and Pierre Berthemont.
Eng. Elias Abi Rizk and Eng. Maroun Sader were responsible for most of the data processing for this atlas.

The final review and editing was executed by Eng. Yasmeen Anakar.

This book contains information obtained from authentic and highly-regarded sources. Reprinted material is quoted with permission, and sources are indicated. A large list of references is listed. Every possible attention has been taken to ensure that, to the best of our knowledge, the information contained in this atlas is accurate at the date of publication. However, we cannot guarantee that our work is entirely free of error and whilst we would be grateful to learn of any inaccuracies, we do not accept responsibility for loss or damage resulting from reliance on information contained within this publication.

This book may not be reproduced or transmitted fully or partially in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without prior written authorisation from the National Council for Scientific Research.

Published in 2013 by © the National Council for Scientific Research Lebanon (CNRS)-Beirut Lebanon.
All rights reserved

Printed in Beirut, Lebanon at …… Ltd

Graphic design by Roula Abi Rizk Mouawad
Printing and binding by ………..

International Standard Book Number
Foreword

The Space Atlas of Lebanon is the first atlas of its kind published by the Lebanese National Council for Scientific Research (CNRS-L) covering almost all aspects of Lebanon’s natural resources: agriculture, water resources, soil, geology, and forest cover. It sheds light on the available natural resources of Lebanon as viewed from space, exposing almost all aspects of natural hazards that can affect the country in the future, and emphasizing on the factors threatening these resources, especially, the anthropogenic causes of environmental degradation. The range of such causes varies from issues pertaining to the overall economic and environmental conditions, to those affecting the limited resources and the ecology of the marine and terrestrial environments.

Remote Sensing was used, in combination with Geographic Information System techniques, to determine the acute deterioration and depletion of the country’s natural resources.

The information exposed in this Atlas aims to describe the real situation of Natural Resources of Lebanon in order to predict how the future is likely to be. Accordingly, risk mitigation can be achieved with a better assessment and analysis of remotely sensed satellite images.

We are grateful to all those who provided comments and remarks which helped shape the book in its final form.

Signature

Prof. Mouin Hamzé
Secretary General of the Lebanese National Council for Scientific Research

Source of data

References
A Brief Introduction about the Lebanese National Council for Scientific Research (CNRS-L)

The National Centre for Scientific Research in Lebanon (CNRS-L) was established in 1962 as a central science policy-making public institution under the authority of the Prime Minister and gained administrative and financial autonomy. The CNRS-L manages and uses the following research centres:

1. National Centre for Marine Sciences
 - Established in 1977, the National Centre for Marine Sciences (NCMS) comprises of a multi-skilled group of scientists and researchers committed to carrying out research in marine sciences, particularly aspects of coastal pollution, and the conservation of marine and terrestrial ecosystems. In addition, the CGM supports diverse coastal and marine studies tackling the development of sea resources.

2. National Centre for Geophysical Research
 - Established in 1975 by the Ministry of Public Health and the General Directorate of Customs, particularly in controlling the import of radioactive sources and equipment used as sources of ionizing radiation. The LAEC cooperates closely with the Ministry of Public Health and the General Directorate of Customs, particularly in controlling the import of radioactive sources and equipment used as sources of ionizing radiation.

3. National Centre for Geophysical Research
 - The National Centre for Geophysical Research (GNR) was established in 1977. It is responsible for acquiring and processing of satellite imagery, providing remote sensing data and continuously extending a symposium series on remote sensing and GIS technology. The Centre has proved to be an important facility for decision makers as it is supporting various activities that are essential to several ministries. The NGR is responsible for applications and processing of satellite imagery, providing remote sensing data and continuously extending a symposium series on remote sensing and GIS technology. The Centre has proved to be an important facility for decision makers as it is supporting various activities that are essential to several ministries. The NGR is responsible for applications and processing of satellite imagery, providing remote sensing data and continuously extending a symposium series on remote sensing and GIS technology.

4. Lebanese Atomic Energy Commission
 - The Lebanese Atomic Energy Commission (LAEC) was established in the year 1995 through a support grant from the International Atomic Energy Commission Agency. The Centre is located in Beirut, where approximately seventy researchers, experts, engineers and technicians work. The centre is engaged in broad-based multidisciplinary research programmes focusing on the radioprotection infrastructure of all radioactive sources in Lebanon and conducts surveys on possible radioactive pollution. The LAEC cooperates closely with the Ministry of Public Health and the General Directorate of Customs, particularly in controlling the import of radioactive sources and equipment used as sources of ionizing radiation. The mandate of the LAEC has been extended to cover the monitoring of the nuclear safety of im- ported commodity and related equipment, and to maintain a national record of all radioactive materials and equipment in Lebanon.

Major activities of the CNRS-L

- **Scholarship Grant Program**
 - The CNRS-L supports scientific research programmes and provides PhD scholarships to Lebanese students specialising in various disciplines abroad. Over 400 graduates from this programme currently work in Lebanese universities. Lebanon now has the largest number of PhD holders in the country.

- **Research Grant Program**
 - The CNRS-L established a programme designed to support grants for specific projects carried out by individual researchers or university professors and for multidisciplinary projects focusing on a definite discipline. The CNRS-L is currently involved in several projects, such as the Lebanese-Syrian Cooperation program, program Cedre, CIRM (Italy) - CNRS (Lebanon) Agreement & Cooperative programmes and the Framework Agreement between the CNRS (Lebanon) & Politecnico Di Milano (Italy).

- **International and Regional Cooperation**
 - The CNRS-L provides a platform for scientific cooperation between researchers from Lebanon and others countries such as Syria and Italy. Currently it is involved in several projects, such as the Mediterranean Innovation and Research Coordination Action (MIRA), Establishing Monitoring and Sustainable Development of the Lebanese Sea (CANA), Improving National Assessment and Monitoring Capacities for Integrated Environmental and Coastal Ecosystems (INCAM) Management, Mediterranean Innovation and Research Coordination Action (MIRA), Establishing the EU-Mediterranean ICT Research Network (JOIN-MED), Regional Coordination on Integrated Water Resources Management and Capacity Building Program, and Capacity Building in Water Project (GAINWEB).

- **International Projects**
 - The CNRS-L also supports international projects such as: Establishing Monitoring and Sustainable Development of the Lebanese Sea (CANA), Improving National Assessment and Monitoring Capacities for Integrated Environmental and Coastal Ecosystems (INCAM) Management, Mediterranean Innovation and Research Coordination Action (MIRA), Establishing the EU-Mediterranean ICT Research Network (JOIN-MED), Regional Coordination on Integrated Water Resources Management and Capacity Building Program, and Capacity Building in Water Project (GAINWEB).
LIST OF ACRONYMS AND ABBREVIATIONS

AD: Anno Domini
AUB: American University of Beirut
BC: Before Christ
CAPWATER: Capacity Building in Water
CANA: Establishing Monitoring and Sustainable Development of the Lebanese Sea
CDR: Council for Development and Reconstruction
CGG: Centre for Geophysical Research
LNCSR: Lebanese National Council for Scientific Research
DEM: Digital Elevation Model
DGUP: Directorate General for Urban Planning
FAO: Food and Agricultural Organization of the United Nations
GIS: Geographic Information System
IR: Infrared
LAEC: Lebanese Atomic Energy Commission
LBP: Lebanese Pound
MoA: Ministry of Agriculture
MoE: Ministry of Environment
NCGR: National Centre for Geophysical Research
NCMS: National Centre for Marine Sciences
NCRS: National Center for Remote Sensing
NAP: National Action Plan
NR: Natural Reserves
NGO: Non-Governmental Organization
OWLs: Other Wooded Lands
RAMAR: Convention on Wetlands of International Importance
RSC: Remote Sensing Centre
SOTER: Soil and terrain database
UNEP: United Nations Environment Programme
UNESCO: United Nations Educational, Scientific and Cultural Organization
USDA: United States Department of Agriculture
WRB: World Reference Base on Soil Resources

Symbols and Units

cm: centimetres
ha: hectares
km: Kilometre
km²: Square Kilometre
$: United States Dollar
asl: above the sea level

LIST OF MAPS

Map 1. Digital Elevation Model map for Lebanon
Map 2. Lebanon Geological map 1: 50 000
Map 3. Lebanon soil map 1: 50 000
Map 4. Lebanon forest cover map 1: 50 000
Map 5. Lebanon Water resources map 1: 50 000
Map 6. Land cover map for Tripoli region 1: 20 000 (year 2006)
Map 7. Land cover map for Baalbeck region 1: 20 000 (year 2006)
Map 8. Land cover map for Beddijn region 1: 20 000 (year 2006)
Map 9. Land cover map for Beirut region 1: 20 000 (year 2006)
Map 10. Land cover map for Bint Jbeil region 1: 20 000 (year 2006)
Map 11. Land cover map for Zahleh region 1: 20 000 (year 2006)
Map 12. Land cover map for Saida region 1: 20 000 (year 2006)
Map 13. Land cover map for Rachaya region 1: 20 000 (year 2006)
Map 14. Land cover map for Sour region 1: 20 000 (year 2006)
Map 15. Land cover map for Kfars province 1: 20 000 (year 2006)
Map 16. Lebanon Infrastructure map
Map 17. Envisat Aria map map for the oil slicks in Lebanon on August 3, 2006
Map 18. Envisat Aria map for the oil slicks in Lebanon on August 19, 2006
Map 19. Lebanon Forest fire risk map
Map 20. Chlorophyll-a map of the Tripoli coastal area
Map 21. Turbidity map of the Tripoli coastal area
Map 22. Secchi disk depth map of the Tripoli coastal area
Map 23. Monthly mean chlorophyll-a map of the Lebanese waters
Map 27. Simulated salinity from LSM at 5m; 10-day average for 10-20 March (from Kabbara et al., 2006)
Map 28. Simulated salinity from LSM at 5m; 10-day average for 10-20 December (from Kabbara et al., 2006)
Map 29. Simulated salinity from LSM at 5m; 10-day average for 10-20 June (from Kabbara et al., 2006)
Map 30. Simulated salinity from LSM at 5m; 10-day average for 10-20 August (from Kabbara et al., 2006)
Map 31. Map for meteorological stations for Lebanon
Map 32. Lebanon water resources map
Map 33. Risk assessment of Quarries in Lebanon map 1: 50 000

IV | Space Atlas of Lebanon

V | Space Atlas of Lebanon
Vienna 1:100000 Satellite Image Collection

List of Satellite Images

Sat 1. IKONOS 80 centimetres resolution satellite image for Beirut in 2005
Sat 2. IKONOS satellite image for Tyre in 2005
Sat 3. IKONOS 80 centimetres resolution satellite image for Chouaifat in 2005
Sat 4. IKONOS 80 centimetres resolution satellite image for Nabatiyeh in 2005
Sat 5. IKONOS 80 centimetres resolution satellite image for Tyr for the year 2005
Sat 6. IKONOS 80 centimetres resolution satellite image for Baaleck for the year 2005
Sat 7. IKONOS satellite image for Karm Chbat Cedar Nature reserve
Sat 8. IKONOS 80 centimetres resolution satellite image for Tyre Coast Nature Reserve for the year 2005
Sat 9. IKONOS satellite image for the Bir-Hassan airport in 1943
Sat 10. IKONOS satellite image for Arz Bsharre
Sat 11. IKONOS satellite image for Douma
Sat 12. IKONOS satellite image for Fakra
Sat 13. IKONOS satellite image for Jounieh
Sat 14. IKONOS satellite image for Jbeil
Sat 15. IKONOS satellite image for Bekfaya
Sat 16. IKONOS satellite image for Bar Elias
Sat 17. IKONOS satellite image for Rawcheh
Sat 18. IKONOS satellite image for Beirut
Sat 19. IKONOS satellite image for Aerial photos for Lebanon in 1947
Sat 20. IKONOS satellite image for Beirut airport in 1947
Sat 21. IKONOS satellite image for Beirut, Central Lebanon
Sat 22. IKONOS satellite image for Central Lebanon
Sat 23. IKONOS satellite image for Northern Lebanon
Sat 24. IKONOS satellite image for South Lebanon

List of Aerial Photos

Aerial 1. Aerial photo, DAS for the Biel Emissary
Aerial 2. Aerial photo, DAS for Aaléq
Aerial 3. Aerial photo, DAS for Chouf
Aerial 4. Aerial photo, DAS for Akkar
Aerial 5. Aerial photo, DAS for Baalbek
Aerial 6. Aerial photo, DAS for Fahsoun
Aerial 7. Aerial photo, DAS for Kfardebian
Aerial 8. Aerial photo, DAS for Lebanon
Aerial 9. Aerial photo, DAS for Mount Lebanon
Aerial 10. Aerial photo, DAS for Baalbek
Aerial 11. Aerial photo, DAS for the Biel Emissary
Aerial 12. Aerial photo, DAS for the Biel Emissary
Aerial 13. Aerial photo, DAS for Akkar
Aerial 14. Aerial photo for the Biel Emissary airport in 1943
Aerial 15. Aerial photo for Beirut airport in 1943
Introduction

This Space Atlas is the first Atlas for Lebanon based on satellite images covering the entire country. It is the product of multidisciplinary research and studies involving advanced Remote Sensing and Geographic Information System techniques. This survey was carried out in considerable details, covering (10284 km²) in almost all the country, the existing natural resources as well as the main factors contributing to both their conservation and loss were identified. Accurate details obtained, proved necessary and advantageous in identifying the main threats for Lebanon resources likely to emerge in the coming years. The Space Atlas of Lebanon was developed by the Remote Sensing Centre of the CNRS-L, with the objective of presenting Lebanon as it is seen from space. This current work is designed to answer questions of those interested in understanding the evolution of technologies used in the analysis of geographic, physical, and social themes, to present information in environmental areas such as territorial development, natural and archaeological environments, pollution and seismology. This work is a continuity and complementarity of the preceding Lebanese Atlases. It puts forward an educational approach to Remote Sensing and demonstrates tangible techniques and applications in the fields of image processing and spatial assessment of satellite data. The Atlas development made use of collaboration between different CNRS-L departments, especially those related to remote sensing, in addition to the contribution from the General Directorate of Antiquities.

The Atlas is structured as follows:

The first section presents the spatial organization of the Lebanese territories including its conurbation and cities. It assesses the current situation and evolution of the urban spaces as well as the communication infrastructure.

Sections 2, 3 and 4 describe the physical characteristics of land as well as the natural resources of Lebanon: agricultural areas, forest, water bodies, natural and archaeological sites through remote sensing spatial analysis of satellite images.

Section 5 deals with different themes covering risk analysis of natural threats (e.g. earthquakes, landslides, and soil erosion) and human induced pressures. Also portrayed are the priority challenges such as pollution, desertification and forest fires.

Remote sensing is a discipline that consists of studying objects and physical phenomena by acquiring information distantly. The main remote sensing technique is by far the study of terrestrial environments using different sensors on board of a range of satellites or airplanes. These sensors are sensitive to the electromagnetic radiation emitted or reflected from the terrestrial surface or its atmosphere. A science which started in the 19th century, remote sensing evolved during the two world wars, especially, through the content and race to the exploitation of space. Fields of information are diverse and diverge in different domains such as those of meteorology and climatology, oceanography, cartography, and geography. However, the use of Remote Sensing in combination with GIS also strengthens the integration of new information leading to further assessments of natural as well as the impact of human beings on natural resources.
Lebanon is located on the Eastern shore of the Mediterranean Sea, at the meeting point of three continents, Europe, Africa and Asia. It is the mainland of many civilizations whose traces may still be seen today. It is bordered from the north and east by Syria and from the south by Palestine. The total area of the country is approximately 10,284 square kilometers (4,500 square miles). Lebanon is characterized by its moderate climate which is affected by the Mediterranean Sea from the west and the desert area in the east.

Landsat ETM+ images, acquired in June 2005, illustrate the different geographic features of the country. From this multi-spectral image, a false color composite image was generated using the combination of bands (Infrared, Red, and Green). In this combination, snow is usually seen white since it reflects 80% of the incoming light. As opposed to water bodies, such as the surface of a lake or the sea which are seen black since water traps almost all incoming lights, the degradation of red represents the vegetation cover due to the chlorophyll content and the light stress of each plant. In the following images, Lebanon is divided into five zones of 2,056.8 km² each from North to South. The central zone is divided into three sub-zones as shown in pictures 1, 2 and 3.

Zone 1: Northern Lebanon
Zone 2: Central Lebanon
Zone 3: Central Lebanon
Zone 4: Central Lebanon
Zone 5: Southern Lebanon.
Section 2

Physical Characteristics Of Lebanon
The geological history of Lebanon is divided into five broad phases, and it is distinguished by varying tectonic and depositional environments. The first episode (probably 250 million years ago) is characterized by the Gondwana break and the drop of the sea level, the second is characterized by the stable deep marine environments, while tectonic activities, volcanic eruptions and sea level drop and rise characterized the third episode. During the fourth episode, the first gentle uplifting of Mount Lebanon and Anti-Lebanon began; thus, the main features of Lebanon started to have shape at this time. The last fifty million years have seen an enormous change in the area, from the Middle Eocene Epoch when the area was covered by shallow seas in which limestones were being deposited to its present state of being an emergent and eroding land mass. Therefore, the oldest surface rocks seen in Lebanon are Early Jurassic, perhaps 200 million years old. This is a very recent age compared with the 4.6 billion years age of earth. The Cenomanian is predominant and constitutes 72%, followed by the Jurassic with 12%, Eocene 8%, and the Quaternary deposits 8%. These can be recognized from geological maps 1:50000 developed in 1953 by Dubertret (Map. 2). Almost all the rocks in Lebanon are sedimentary rocks and most of these are pale limestones.

The most variable sequence of sediments is that which extends from the Late Jurassic to the Middle Cretaceous and shows a considerable variety of limestones, sandstones, clays and volcanic ashes that tend to weather to a bright red or purple colour and to give fertile soils. These characteristics favour the utilization of optical remote-sensing sensors operating in the visible domain, where cloud cover has little impact on the sensors, thus sensors operating within the visible domain may acquire continuous coverage of all Lebanese territories. Furthermore, the steepness of the two Lebanon mountain chains can distort the radar signal, thus limiting its capabilities and utilization (DGGA, 1963).

Lebanon is characterized by two major physical entities that directly influence precipitation and the distribution of water resources all over the country: • The mountainous terrains, constituting 18% of the total area, reach an altitude of over 3000 m, and are located in the two massive parallel mountain chains that stretch the entire country from North to South and are separated by the fertile Bekaa plains (with altitudes varying between 800 and 1100 m). • A littoral plain spreading over 250 km. These two entities, in addition to Lebanon’s geographical location (33º 50N, 35º 50E), lead to a warm temperate climate, characteristic of the Mediterranean, with long dry summers and short wet winters. These characteristics favour the utilization of optical remote-sensing sensors operating in the visible domain, where cloud cover has little impact on the sensors, thus sensors operating within the visible domain may acquire continuous coverage of all Lebanese territories. Furthermore, the steepness of the two Lebanon mountain chains can distort the radar signal, thus limiting its capabilities and utilization (DGGA, 1963).
Geological Features

1. Fractures
 - Remote sensing and a multi-spectral data source to identify fracture systems by using several spectral and digital indicators. Landsat 7 ETM image showing the huge rock fractures by using 2 digital image acquisitions. Yellow linear features are the identified fractures (identified fractures).

2. Ring structures
 - Landsat ETM images showing ring structures on terrain surface. Identified fractures (identified fractures).

3. Vegetation distribution and evolution
 - Satellite images with different optical and spectral properties are evidence of eolian activity like wind shaped rock surface and desertification. These features are attributed to the existence of physical activity or erosional activities from surface that shape the Earth's surface since millions of years.

4. Soil mapping
 - Satellite images with different optical and spectral properties show different geological structures. These are ring structures and a number of fractures with different dimensions and orientations. It shows the capability of remote sensing in geological aspects and the interpretation of their mechanisms.

Soil Cover of Lebanon

Lebanon’s limited territory has a striking diversity of topography, geology, climate, hydrology and vegetation. Addressing the human impact, there result in a remarkable mosaic of soil types that can be found in comparable areas. The first complete soil map of Lebanon was produced by the French Soil Scientist G. Maréchal. Geometrically defined areas with varying morphological properties were placed and total area on arable land. Among identified features are the extensive distribution of two soil types, and they are formed from association of different soil types. Recent soil studies and projects have been taking place at the NCRI, in cooperation with different international units, such as the American University of Beirut and the Lebanon University. In 1997, with the establishment of the RSC at the NCRI, a new era of soil-related activities started with the initiation of mapping of soil resources with the use of RS and in-situ information system for the creation of a soil field map at 1:50,000 scale, and soil herbarium data. In addition, 266 soil profiles were described, analysed and mapped (Map 3). Soil profiles were classified according to the WRB (FAO/UNESCO & USDA) nomenclature.

Soil colour reflects the organic matter and CaCO₃ content, as well as the oxidation-reduction status and pedogenetic levels characterizing the soil organic and mineral content, drainage conditions and hydrological characteristics. These patterns can be deduced and areas delineated from the satellite images. A total of 11 soil types (image classes) representing the higher soil component containing 113 soil mapping units were identified as shown in the table.

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptosols</td>
<td>Shallow soils (<20 cm) developed on limestone rocks. Their structure is characterized by a combination of low relief and topographic features.</td>
</tr>
<tr>
<td>Luvisols</td>
<td>Soils with higher OM and CaCO₃ content, generally occurring in humid regions.</td>
</tr>
<tr>
<td>Fluvisols</td>
<td>Deep and very deep, productive, clayey soils with high CaCO₃ content.</td>
</tr>
<tr>
<td>Regosols</td>
<td>Shallow to moderate depth with related hot, and clayey soils.</td>
</tr>
<tr>
<td>Calcisols</td>
<td>Sandy soils with limited organic content.</td>
</tr>
<tr>
<td>Andosols</td>
<td>These soils are highly porous, with isolated pools of water, such as loessial.</td>
</tr>
<tr>
<td>Vertisols</td>
<td>Moisture is retained in the soil due to the presence of calcium carbonate.</td>
</tr>
<tr>
<td>Calcic Leptosols</td>
<td>These soils are characterized by well-developed horizons, often ploughed.</td>
</tr>
<tr>
<td>Aridic Leptosols</td>
<td>These soils are characterized by well-developed horizons, often ploughed.</td>
</tr>
</tbody>
</table>

Map 3 - Lebanon soil map 1: 50000

Soil as a natural resources component

Soil is one of the most important natural elements of the earth system and an essential component of land resources. The new soil and terrain database (SOTER) of Lebanon at 1:50,000 scale, represents a tool to elaborate a national soil policy and guidelines for sustainable land use planning. It shows how to manipulate different hydrological elements to identify potential groundwater zones and subsurface flow regimes (Figure 4).

Soil coloration

Soil coloration is a natural characteristic that reflects the soil’s chemical composition and its properties. It can be influenced by factors such as the amount of organic matter, the presence of certain minerals, and the pH level of the soil. In some cases, soil coloration can also be affected by human activities, such as agriculture and urbanization.

Table 1 - Soil types in Lebanon

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptosols</td>
<td>Shallow soils (<20 cm) developed on limestone rocks. Their structure is characterized by a combination of low relief and topographic features.</td>
</tr>
<tr>
<td>Luvisols</td>
<td>Soils with higher OM and CaCO₃ content, generally occurring in humid regions.</td>
</tr>
<tr>
<td>Fluvisols</td>
<td>Deep and very deep, productive, clayey soils with high CaCO₃ content.</td>
</tr>
<tr>
<td>Regosols</td>
<td>Shallow to moderate depth with related hot, and clayey soils.</td>
</tr>
<tr>
<td>Calcisols</td>
<td>Sandy soils with limited organic content.</td>
</tr>
<tr>
<td>Andosols</td>
<td>These soils are highly porous, with isolated pools of water, such as loessial.</td>
</tr>
<tr>
<td>Vertisols</td>
<td>Moisture is retained in the soil due to the presence of calcium carbonate.</td>
</tr>
<tr>
<td>Calcic Leptosols</td>
<td>These soils are characterized by well-developed horizons, often ploughed.</td>
</tr>
<tr>
<td>Aridic Leptosols</td>
<td>These soils are characterized by well-developed horizons, often ploughed.</td>
</tr>
</tbody>
</table>

Fig. - 10 Anthrosols

Vegetation distribution and evolution

Vegetation distribution and evolution are influenced by various factors, including topography, climate, soil type, and human activities. Remote sensing can be a helpful tool to identify fracture systems, geological features, and vegetation distribution and evolution. This information can be useful in planning and managing natural resources and ecosystems.
Water Resources

Lebanon, the so-called the water tower, is distinct from other countries in the Middle East through its extensive water networks. Lebanon has a number of artificial lakes, the Qaraoun Lake is the largest one (~5 km²), located in the south of the Bekaa valley. There are 17 permanent rivers. Three of them are inner ones and originated from the Bekaa plain while two of them do not flow into the sea; these are the Hasbani and Assi Rivers. The massifs of Mount Lebanon and Anti-Lebanon form enormous masses of porous and water absorbing limestone. They contribute to the formation of groundwater in large volumes. The main sources are located at altitudes varying between 1200 and 1500 m as those of Afqa and Aqoura, or buried in valleys such as Jeita or Antelias.

Natural Resources of Lebanon

Map 5 - Lebanon Water resources map 1:50 000. Showing the quality of the water on different sites along the Lebanese coast. Sewage flowing on the sea. Development of marine green macroalgae due to organic pollution.

Agricultural Land

High resolution satellite images such as IKONOS (1 m resolution) images hold providing information on the surface areas such as the number of greenhouses as well as the chapels cultivated mainly by vegetables, fruit trees and banana.

In this respect, areas cultivated with olive trees were estimated at 580,000 hectares (23% of the total cultivated area) for the year 2001. The largest portion of the area is found in the North (45%), followed by Nabatieh (29%), the rest of the South (26%). Mount Lebanon (17%) and the Bekaa (8%). Canals were estimated for 62,200 hectares for the same year.

The most important cultivated cereal in Lebanon is wheat, barley and corn. The Bekaa plain occupies the forefront in terms of cultivated cereal areas in Lebanon (59%) followed by the North (Akkar plain) with 20%.

Grassland and Barerock

Under good and favourable environmental conditions, such as gentle slopes, warm temperature and available moisture, grasslands cover almost 10.44% of the land cover of Lebanon with a 139,779 km². The major grasslands are found along the water courses, generally between 230 and 800 meters asl. In addition, they can be found as large patches surrounding forest areas or in small ones between the forest trees or close to water bodies. In elevated zones, these tend to make a small layer and disappear where bare rock exists.

Forest land

Forests in Lebanon represent a unique feature in the generally semi-arid and desert environment of the Eastern Mediterranean. In 2002, forests covered 136,731 ha while other Wooded Lands (OWLs) covered 188,378 ha. 13.5% and 10.37% of the forest area of the country respectively. Other lands with trees (including fruit and olive trees) covered a surface of 11,634 ha (1.1%) of the surface of the country. The forest cover is broadly divided into three main classes: forests, scrub and shrubs. To these, we should add the presence of Quercus coccifera, Quercus ilex, Pinus pinea, Pinus halepensis, Pinus brutia and Cupressus sempervirens.

Snow Cover

In Lebanon, there is, annually, a maximum of 89 snowy days according to the data of 13 years between 2000 and 2012. Values can range from a single day or even none, on the coastal area, the North Eastern and the South, to reach the maximum on the highest peaks of Mount Lebanon such as Al-Korna Al-Sawda. This reflects the diversity of Lebanese climate and the dissimilarity in his topography.

Agricultural Land

High resolution satellite images such as IKONOS (1 m resolution) images hold providing information on the surface areas such as the number of greenhouses as well as the chapels cultivated mainly by vegetables, fruit trees and banana.

In this respect, areas cultivated with olive trees were estimated at 580,000 hectares (23% of the total cultivated area) for the year 2001. The largest portion of the area is found in the North (45%), followed by Nabatieh (29%), the rest of the South (26%). Mount Lebanon (17%) and the Bekaa (8%). Canals were estimated for 62,200 hectares for the same year.

The most important cultivated cereal in Lebanon is wheat, barley and corn. The Bekaa plain occupies the forefront in terms of cultivated cereal areas in Lebanon (59%) followed by the North (Akkar plain) with 20%.

The most important citrus crops in Lebanon are: oranges (236 thousand tons produced), lemons (113 thousand tons produced) and clementines (31 thousand tons produced).

Water Resources

In Lebanon, the Bekaa Valley is dotted from other critical trees in the Middle East through its extensive water networks. Lebanon has a number of artificial lakes, the Qaraoun Lake is the largest one (~5 km²), located in the south of the Bekaa valley. There are 17 permanent rivers. Three of them are inner ones and originated from the Bekaa plain while two of them do not flow into the sea; these are the Hasbani and Assi Rivers. The massifs of Mount Lebanon and Anti-Lebanon form enormous masses of porous and water absorbing limestone. They contribute to the formation of groundwater in large volumes. The main sources are located at altitudes varying between 1200 and 1500 m as those of Afqa and Aqoura, or buried in valleys such as Jeita or Antelias.

Monitoring of the Lebanese Coastal Waters

The National Center for Marine Sciences, conducts, since 1977, a monitoring program of the Lebanese coastal waters. 25 sites reflecting the geomorphological and environmental aspects of the shore are sampled monthly. Measurements of physico-chemical, chemical, bacteriological and biological indicators are carried out in order to evaluate the pollution level and to document the changes of the coastal waters in Lebanon.
Land Cover

Map 6 - Land cover map for Tripoli region 1: 20,000 (year 2006)
Source: CNRS, 2005

Map 7 - Land cover map for Becharre region 1: 20,000 (year 2006)
Source: CNRS, 2005

Legend

Capital
Main Cities
Gaza Center
Towns

Legend:
- Urban area
- Industrial & Utilities area
- Infrastructure
- Agricultural area
- Forest
- Water
- Beach
- Sand/Dune
- Wetland
- Pasture
- Scrubland
- Herbs
- Mediterranean Vegetation
- Marine vegetation
- Water

Natural Resources of Lebanon

Map 6 - Land cover map for Tripoli region 1: 20,000 (year 2006)
Source: CNRS, 2005

Map 7 - Land cover map for Becharre region 1: 20,000 (year 2006)
Source: CNRS, 2005
Caza: Bcharre
Mohafaza: North Lebanon
Altitude: 2200 m
Distance from Beirut: 100 km

Arz Bcharre
Caza: Koura
Mohafaza: North Lebanon
Altitude: 350 m
Distance from Beirut: 0 km

Aerial 1 - Aerial photo, DAG, for Arz Bsharre
Aerial 2 - Aerial photo, DAG for Amioun

Natural Aerial Views
Caza: Batroun
Mohafaza: North Lebanon
Altitude: 0 m
Distance from Beirut: 55 km

Chekka

Caza: Batroun
Mohafaza: North Lebanon
Altitude: 1500 m
Distance from Beirut: 70 km

Douma

Landscape & Cultural Heritage

Space Atlas of Lebanon 38 | Space Atlas of Lebanon 39
Jounieh

Caza: Kesrwan
Mohafaza: Mount Lebanon
Altitude: 10 m
Distance from Beirut: 15 km

Faqra

Caza: Kesrwan
Mohafaza: Mount Lebanon
Altitude: 1600 m
Distance from Beirut: 40 km

Landscape & Cultural Heritage

Aerial 7 - Aerial photo, DGs for Jounieh
Aerial 8 - Aerial photo, DGs for Faqra
Archaeological Sites

Qadisha Valley and Cedars of God

Lebanon’s deepest valley (Wadi), Qadisha is a World Heritage site since 1998. Above it respite the famous Cedar forest of Bsharri called “Cedars of God and Towers Al-Qorna Al-Saoudaa, Lebanon’s highest peak.

“Qadisha” means “holiness” in Semitic languages, consequently, Wadi Qadisha means the “Holy Valley”.

The valley was inhabited since prehistoric times and during the beginning of the Christian era. It housed many early Christian monastic settlements, among others, rock-cut chapels, grottoes, and hermitages, many painted with frescoes dating back to the 12th and 13th centuries.

Wadi Qadisha and the Cedars of God have been included in the World Heritage List of the Convention concerning the Protection of the World Cultural and Natural Heritage in 1998. Inclusion on this List confirms the exceptional scientific value of the cultural and natural sites and requires its protection for the benefit of all humanity.

Caza: Aley

Mohafaza: Mount Lebanon

Altitude: 750 m

Distance from Beirut: 15 km
Aanjar
Aanjar, 58 km from Beirut, lies in the middle of some of the richest agricultural lands in Lebanon. It dates exclusively from one period, the Umayyad dynasty. Aanjar is considered as the only historic example of an inland commercial centre. The city benefited from its strategic position on intersecting trade routes leading to Damascus, Homs, Baalbek, and the south.

Baalbek
Situated in the centre of the fertile Bekaa valley, between the Mount Lebanon chain to the West and the Anti-Lebanon to the East, Baalbek temple complex was on the crossroad of two main historic trade routes, one between the Mediterranean coast and the Syrian inland and the other between Northern Syria and Northern Palestine. Roman temples, Islamic structures and many archaeological remains dating from different historical periods transformed Baalbek into a real open-air museum. Baalbek was the major construction project Emperor Augustus the founder of the Roman Empire and his successors ever made in the East. It was then transformed into an important cultural and pilgrimage place in addition to being an essential meeting point of all the caravans crossing the Bekaa. Consequently, Baalbek was transformed into a central place for the dissemination of the Roman civilization and to show the power of Rome to the inhabitants of the region.
Byblos

Located 37 kilometres north of Beirut, Jbeil or Byblos is the oldest continuously inhabited city on the Lebanese coast. According to Phoenician belief, it was founded by the god "EL" for several centuries it was called "Gudla" and later "Gebal", while the term "Canaan" was applied to the coast in general. Within the old town of Byblos, medieval Arab and Crusader remains are continuous reminders of its recent past. Before Byblos was excavated, the successive layers of the ancient ruins had formed a mound about 12 meters high covered with houses and gardens. The proper excavations of the site began in 1921-1924 by Pierre Montet, a French Egyptologist. Afterwards, Maurice Dunand continued his work in 1926 and undertook numerous excavation campaigns until 1975. These extensive excavations made Byblos one of the most important archaeological sites in the region.

Tyre

One of the earliest metropolises, Tyre enjoys exceptional universal value and outstanding characteristics. It is the place where, according to legend, the purple dye was invented, and where the great Phoenician city ruled the seas and founded prosperous colonies such as Cadiz and Carthage. Its historical role declined at the end of the Crusades. It conserves important archaeological remains, mainly from Roman times. Because of its exceptional value, Tyre was nominated World Heritage Site in 1984. The inscription of Tyre on the World Heritage List demonstrates the recognition bestowed upon Tyre by the international community and the need to safeguard its heritage for future generations.
Nature Reserves (NR)
Palm Island Natural Reserve
Located northwest of Tripoli, Sanani, Ramkine and Palm Islands together with their surrounding sea represent the Palm Islands NR. It is also called the "Rabbit Island" because it used to host a large population of introduced domestic rabbits which have been removed later on in respect of the ecological integrity of the site. Due to its special characteristics, Palm Islands Nature Reserve has been designated as a Mediterranean Specially Protected Area according to the Barcelona Convention, an Important Bird Area (Birdlife International).

Karm Chbat Forest Natural Reserve
Located at the border between Akkar and Hermel, Karm Chbat NR is a dense Cedar forest. The site has been declared and protected by decision from the MoE in 1995 to acknowledge for the site importance and priority need for conservation. Since land property and ownership in this area is rather unclear, local families are living on site. Additionally, limits of the protection decision are not precise. Since access is rather complicated due to the specific situation of the region, little is known about biological diversity and richness of the forest.
Tannourine Cedar Forest Nature Reserve

Located in North Lebanon at about 85 km north Beirut, with altitudes ranging between 1300 to 1850 meters above sea level, Tannourine Cedar Forest NR extends exclusively over municipal land belonging to Tannourine Municipality and is surrounded by private forests and Religious Endowment properties (Wakf). The exact extent of the area under protection cannot be precisely determined but is estimated to approximately 150 ha. It is the most continuous Cedar forest in Lebanon. The rocky topography of the site resulted in important diversity in terms of ecosystems, and microecosystems where Cedar trees grow on extremely steep slopes. Out of the 300 plant species found in the reserve, 23 are endemic (SETS, 2007). Moreover, the presence of 16 species of mammals has been recorded, and this confirms the importance of this reserve for wildlife conservation.

Horsh Ehden Nature Reserve

Located on the upper northeastern slopes of Mount Lebanon, ranging from 1200 m to 2000 m in altitude, Horsh Ehden NR extends over 3 bio-geographic zones, and offers a unique assemblage of conifers, deciduous and evergreen broadleaf trees with a highly variable topography. The forest ecosystem accounts for high biodiversity as it hosts nearly 40% of total plant species present in Lebanon, 20000 species, 116 bird species and over 300 different fungi. The Reserve holds utmost conservation priorities since the Cedrus libani forest represents about 15% of the remaining cedar forests in Lebanon.

Yammouneh Nature Reserve

Known for its major faults and temporary wetlands, the Yammouneh NR is also rich in terms of forest cover as it hosts one of the largest juniper forests of Lebanon. The forest has been protected since 1990 by virtue of a law passed in 1990; however, due to land ownership conflicts, there has been a lack of effective management of the reserve.

Bentael Nature Reserve

Located at the foothills of Mount Lebanon northeast of Jbeil (Byblos), Bentael NR is the smallest NR in Lebanon (1.5 km²), and one of the first reserves to be established in Lebanon following the initiative of local inhabitants of the village of Bentael to conserve their natural heritage. It was even declared by a local NGO as a Natural area since 1981, almost 20 years before its official declaration as a protected area. Mainly dominated by pine ecosystems, and located on the flight path of the migratory hawk and other raptors, Bentael NR is the only protected forest ecosystem situated at low to medium altitudes ranging from 350 to 800 m.
Tyre Coast Nature Reserve

Located in South Lebanon, over 300 ha of sandy beach, Tyre Coast NR is also considered as an important wetland and protected as a RAMSAR (Ramsar Convention on Wetlands of International Importance) site.

The site is particularly interesting because it includes the largest sandy beach in Lebanon, contains several fresh water estuaries and has been recognized as a major nesting site for the endangered Loggerhead and Green Turtles in Lebanon.

The Reserve is divided into three sections separated by the Rachidiyeh Palestinian refugee camp.

Ammiq Wetland: A voluntary reserve

Located in the Western Bekaa, over 280 ha of flooded area, at an altitude of 865 m asl, Ammiq wetlands are the largest remaining freshwater wetlands in Lebanon.

Fed by mountain springs, late winter rain and melting snow, the marsh dries out yearly between August and November. Remnant of the swamps, lakes and seasonal marshes which until 1911 covered 90% of the Bekaa Valley, Ammiq wetland is currently used as a major water resource for people locally. It serves for nature conservation and research as well as a grazing spot for goats and sheep during the dry period of August-November.

Ammiq is considered as a wetland of international importance (RAMSAR site), an IBA site and has been declared an Important Bird Area (IBA) by BirdLife International.

Biodiversity on site includes bats and rodents, and carnivores such as Wolves, Foxes, the Otters, Hyenas, Wild cats and Swamp cats, 260 species of birds, reptiles and amphibians, as well as a diverse aquatic plant community that is considered rare in the Middle East region.

Akkar Donnieh Highlands: at the heart a unique Natural National Park

Acknowledged for its high biodiversity richness, harbouring old vegetation types including the mixed Cedar, Juniper and Pine forests, listed at the top of priority sites designated for protection by the Biodiversity report (UNEP and MoA, 1996) and the National Biodiversity Strategy and Action Plan (1998) and the National Action Program to Combat Desertification (2003), as well as the Lebanese National Master Plan (2004), the Akkar-Donnieh highlands are among of the most deprived regions in Lebanon in terms of lack of basic infrastructure and high unemployment rate.

With more than 500 species of flora and 150 of birds, the area is now being evaluated as a potential Natural National Park. The concerned municipalities of Akkar el Atika, Qobayyat and Fnaideq, have initiated the habitat suitability map and have started to prepare (with MADA association) a common charter for the territory.

Recognized by the MoE, the MoA, the CDR and the DGUP, the area is being examined as a potential Man and the Biosphere reserve as well as an IBA.
Tripoli is the city that ranks second in size and population (around 189,000 inhabitants). Tripoli is 85 km north to Beirut, located at the international crossroads linking Lebanon to Syria and Turkey. The city was founded in 2000 B.C. as a commercial port, being one of the three main Phoenician cities after Sidon and Arwad. The ancient city is currently located within the Al Mina Island. Through centuries the city was conquered several times, this left many architectural traces. Due to these events, the city preserved its traditional urban tissue, Medina, Souks, Hammams, and Mosques.

The city infrastructure is under full rehabilitation; several development projects are being implemented in the area including the extension of the port quay and stockpile capacities, in addition to the creation of a dyke. The Rachid Karami International Fair, a remarkable vast site as seen in the IKONOS image, is located in the eastern part of the Al Mina Island.

Sat. 21 - IKONOS 80 centimetres resolution satellite image for Tripoli in 2005.
Sat. 22 - Ikonos 80 centimetres resolution satellite image for Rachid Karami International Fair in 2005.
Throughout history, Beirut has served as a port for Phoenicians and Romans. It witnessed an exponential urban growth during the French mandate period and the decade during the 20th century. Nowadays, it is populated by 1.3 million people almost 33% of the total population (2003). Greater Beirut spreads over an area of 468 km² (60 km north-south and 25 km east-west) gathering 121 municipalities. The assessment of urban growth requires updated statistics of population estimates. By default, RS techniques allow the assessment of urban expansion of Beirut through the observation of the city morphology. Satellite images are showing that the built-up area occupies primarily the coastal plains, this area spread over valleys abandoning valleys and sharp slopes. There is a massive urban expansion of the city from 1950’s, following a linear pattern over major transportation networks.
Sat. 24 - Ikonos 80 centimetres resolution satellite image for Zalka in 2005

Urbanisation
Sat. 28 - Ikonos 80 centimetres resolution satellite image for Hazmiyeh in 2005
Sat. 31 - Ikonos 80 centimetres resolution satellite image for Beirut Port in 2005

Urbanisation
Zahle
Located at an altitude of 950 m, in the centre of the Bekaa valley on the eastern slope of the Mount Lebanon chain. The city is located at the orifice of Wadi Al-Aarayech where different water sources converge from many sources in Mount Lebanon, including the Bardawni River which crosses the old city centre. Founded three centuries ago, the city is considered a centre for agricultural trade, linking the major regional capitals and cities in the region (e.g. Baghdad, Beirut, Damascus, and Mosul). Zahleh is the fifth city of Lebanon with a population of more than 38,200 residents. It is the administrative capital of the Bekaa Valley. Its development is linked to the development of the railway in the nineteenth century. Afterward, it became the inner harbour between the Bekaa and Syria. Zahle has always been an economic centre with a concentration of industrial, commercial, tourism and agriculture activities.

Saida
A coastal city at 40 km South of Beirut and 40 km North of Tyre. It ranks third in population on the national scale and first in South Lebanon (69,000 inhabitants). The urbanization is arranged along two parallel axes, the North-South axis connecting all coastal cities and the North Eastern-Southern axis. The old centre of the city is located within the littoral promontory whereas the modern extensive articulates around the two major parallel axes imposing a rectilinear morphology of the secondary axes. The city of Saida is considered an industrial and agricultural centre, where fisheries and plantations of citrus and bananas are predominant.
Tyre

The Queen of the Sea, was during ancient times divided into two parts, the Main Land and the Island. The island was built on a small rocky islet linked by a 100 m length path. The city has two ports, the southern Egyptian port and the northern Phoenician port. Tyre is the third largest southern city in Lebanon (51,000 inhabitants). The city is 40 km south of Sidon, 35 km south of Saida, 80 km south of Beirut and 35 km from the city of Akka in Palestine to the south. Different rivers pass mainly the northern edge of the city; these are the Litani, Qasmiye and the thermal source of Ain Habrian. Fisheries and agriculture are the main activities practiced within this urban community. Citrus, bananas and greenhouses are clearly visible within the IKONOS image. Tyre is also the most important tourist pole in this region of Lebanon with major archaeological sites, the Roman Hippodrome which is a World Heritage Site since 1984. To the south, the city is bordered by the Tyre Nature reserve which is a RAMSAR site.

Nabatyeh

Located in the centre of Jabal Amel (historical name of South Lebanon), the city is 22 km south east of Saida and 30 km north east of Tyre. Its foundation dates back to the Nabataean period (second century B.C.). Nowadays, the city has more than 30,000 residents and is in continuous expansion in South Lebanon, half the population is entirely dependent on agriculture as a source of living that accounts for about 70% of total household income. The topography of the region imposes agriculture intensive where olive is the main crop. Surrounded by seven hills: Kassayar ez Zaatar, El-Khreibe, Tall Al-Aaskar, As-Saferi, Al-Ouazzani, Tal er-Rouaiss and Tal el Quaiye and overlooking numerous villages, Nabatyeh is located in a basin at 410 m altitude. The city forms a crossroad linking the villages of the region following the cardinal axes north-south and east-west. The old town is located at the junction of these two axes, the modern extension is developing in tentacles around the main axes, with a higher urban concentration in the northern part of the old city.
During the Second World War, the aircrafts of the allies were landing in the small area between the Bridge of Beirut and Al-Dora to the north. Before taking hold of Rayak Military Airport, which was constructed by the German Forces in World War One.

Back in 1933, the French had already established a civil airport at "Bir Hassan" in Beirut to serve the needs of Lebanon and neighbouring countries. This airport was abandoned later in 1954, when the Beirut International Airport was built.

Beirut Airport

The airport opened on 23 April 1954, replacing the much smaller Bir Hassan Airfield which was located at a short distance to the north. By the time war finally came to an end in 1990, the airport was clearly out-dated and deteriorated. A 10-year reconstruction programme was launched in 1994 to upgrade the airport including the construction of a new terminal and two new runways.

In July 2006, all 3 runways of the airport sustained significant damages from missile strikes by the Israeli Air Force.

Map 16 - Lebanon Infrastructure Map

Airports

The first Airport:

During the Second World War, the aircrafts of the allies were landing in the small area between the Bridge of Beirut and Al-Dora to the north. Before taking hold of Rayak Military Airport, which was constructed by the German Forces in World War One.

Back in 1933, the French had already established a civil airport at "Bir Hassan" in Beirut to serve the needs of Lebanon and neighbouring countries. This airport was abandoned later in 1954, when the Beirut International Airport was built.

Beirut Airport

The airport opened on 23 April 1954, replacing the much smaller Bir Hassan Airfield which was located at a short distance to the north. By the time war finally came to an end in 1990, the airport was clearly out-dated and deteriorated. A 10-year reconstruction programme was launched in 1994 to upgrade the airport including the construction of a new terminal and two new runways.

In July 2006, all 3 runways of the airport sustained significant damages from missile strikes by the Israeli Air Force.
Riyak Airport

Riyak Air Base was originally built and used by the Germans in World War I. After the Allies took control of this base, they enlarged it. During the French Mandate of Lebanon, Riyak Air Base was the centre of attraction of all other military units, not only in Lebanon but also in mandated Syria and all the near east. On August 1, 1945, Lebanon took control of this army from the French together with the Bat talion of the first airbase (Riyak).

Qlaiaat Airport

In the early 1960's, the air base was a small airport owned by an oil company, IPC (Iraq Petroleum Company), who used small airplanes for transporting its engineers, staff and workers between Lebanon and the Arab countries. In 1966, the Lebanese Army took control of the airport and started expanding and developing its technological capabilities. It later became one of the most modernized air bases in the region. In the 1990's, Middle East Airlines ran flights between this air base and Beirut to serve Tripoli and the surrounding area. On July 13, 2006, the Israeli Air Force bombed the air base.

Beirut Port

The capital has a trade port and an international airport for tourists. The opening of the maritime port of Beirut was celebrated in 1894. Since that time many construction works have expanded and developed the port.

Urbanisation

The Port of Tripoli is the 2nd major port in Lebanon. The port covers an approximate area of 3.8 km² (1.2 sq mi), with a water area of 2.2 km² (0.85 sq mi), and the land area consisting of 550,000 m² (5,900,000 sq ft) and a 450,000 m² (5,300,000 sq ft) Duty area adjacent to the current port, earmarked for the future Container Terminal and Free Zone. The Port of Tripoli was “en-Rounded” in 1969 and a modest free zone was later added in 1971.
Starting July 12th 2006, the Israeli army attacked and bombarded for 33 days the main roads and infrastructure of Lebanon leading to very serious damages estimated by the Lebanese authorities, to some U.S.$ 3.6 billion as direct property damage, including nearly U.S.$ 1.2 billion for infrastructure and industrial facilities and U.S.$ 2.4 billion for homes and businesses.

While housing remains by far the most affected by the Israeli bombardment, with an estimated loss of U.S.$ 1.7 billion, it is followed by the industrial and commercial sectors which have been allocated nearly U.S.$ 400 million, and agriculture and irrigation facilities whose losses ranged between U.S.$ 300 and 400 million.

The production of maps locating the bombarded areas provided a first insight into the extent of damage and permitted the establishment of reconstruction priorities.

A set of full coverage of images from the Russian satellite KVR 1000 (2 m resolution) was purchased in order to finely assess the damage of the July 2006 by comparing high resolution satellite images from before and after the war.
The fuel oil spilled into the sea following an Israeli attack on the Jiyyeh Power Plant affected about 140 km of the Lebanese coast situated to the north of the spill site. Its impact on the marine ecosystem was devastating, especially on the sandy beaches and vermetid terraces which were the most polluted part of the coast where massive mortality of Gastropods, Crustaceans, Echinoderms, Fish and Macroscopic Algae was recorded, especially in the moderately and heavily polluted sites.

Hydrobiological components of water suffered and showed notable modifications one month after the oil spill; the nitrate and nitrite ion levels increased in most of the analysed sites along with a disturbance of the phytoplanktonic population expressed by the destruction of cell organelles and the disappearance of chloroplasts in most of them. This situation seems to be returning to normal since October 2006.

The meiobenthic fauna has been also affected by the oil spill, especially on the sandy beaches exposed to wave movement and constantly polluted by fuel oil. At 10 meters depth, the meiobenthic community seemed not to be affected.
The maps below show a comparison of the oil slicks between August 3 and August 19, 2006 based on radar imagery from the ENVISAT ASAR sensor. Due to the different backscatter behaviour of the ocean surface, the oil slicks can be identified as black patches. The radar information was combined with optical LandSat data to ease image interpretation.

More than 35% of the initial forest cover in Lebanon has been deteriorated during the last 40 years leading to a green cover reduction from 12% (1973) to less than 7% of the Lebanese territory nowadays. The map hereinafter represents the forest fire risk map for the year 2006 done by the CNRS-CRS for the entire country, while the MODIS-Terra (250m resolution) image shows smoke and clouds directly after the fire occurred.

Forest fires

Map 17 - Envisat Asar map for the oil slicks in Lebanon on August 3, 2006
Map 18 - Envisat Asar map for the oil slicks in Lebanon on August 19, 2006
Map 19 - Lebanon Forest fire risk map

Map 19 - Lebanon Forest fire risk map
Sea Surface Temperature

The continuous set of satellite measurements taken over the Mediterranean is that of the sea surface temperature derived from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration (NOAA) satellites supplemented more recently by the Along-Track Scanning Radiometer (ATSR) of ERS-1/2. Accuracies lie in the range of 0.3-0.5 °C and spatial resolution is about 1 km.

The most striking feature of the AVHRR SST images is the intricate pattern apparent in the Mediterranean Sea temperature. The entire sea is covered by eddy structures ranging in size from less than 10 km to nearly 100 km. In November 2000 (Figure 1), a warm pool has formed off the Lebanese coast, which is, probably, due to a clockwise gyre activity.

Detection of sea water pollution along the Lebanese coastal line using the thermal infrared band of Landsat-7 ETM+

The marine environment in Lebanon is heavily affected by land-based pollution. This problem mainly concerns areas with dense urban activities. While threatening the marine environment, this pollution dramatically affects the human population. The coastal waters of Lebanon are heavily affected by anthropogenic activities. Along the 225 km coastal line, 75 permanent or temporary watercourses discharge polluted water and wastewater into the sea. With the addition of numerous sewage outlets and oil spills, these pollution inputs are categorized under four major classes:

1. Wastewater inflows.
2. River transported sediments and debris.
3. Thermal inflows.
4. Chemical and oily fluids.

The true areal extent of this pollution is not well identified yet, which requests a comprehensive and continuous observation and monitoring of the coastal waters. The thermal bands of satellite images of Landsat-7 ETM+ can be successfully utilized for this purpose. The principle of this identification is based on thermal differentiation between seawater and polluted water temperatures. This thermal mapping has identified 46 major sources of pollution in the Lebanese marine environment, the nature of which has been checked in the field. Most of them are related to uncontrolled human activities, such as sewage outlets, refineries, and factories. These pollution inputs are documented along with a sound base for developing and implementing the necessary mitigation policies.

Pollution aspects along the Lebanese shoreline:

A) Water outfalls.
B) Transported sediments and debris along rivers.
C) Warm waters from an electric power station.
D) Chemical and petroleum fluids mixed with stream waters.
Ocean colour radiometry

Ocean colour radiometry has been successfully applied for the retrieval of phytoplankton biomass indices such as chlorophyll-a concentration, and other water quality parameters (turbidity, Secchi disk depth, etc.). Sensors originally designed for land observations, like Landsat’s thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+), have proven to be very useful for assessing coastal and Estuarine systems primarily because of their higher spatial resolution (30 m, or half that in panchromatic mode). Water quality in the coastal area of Tripoli (Lebanon) was assessed using SeaWiFS data (Kabbara et al., 2006). Significant pigment concentrations are seen along the coast. Localized areas of high production are due to pollution from human activities.

Data assimilation and the use of satellite data

Satellite data represent by far the largest volume of data used in the European Centre for Medium-Range Weather Forecasts (ECMWF) data assimilation system. Monthly means of wind stress, heat and water fluxes on the sea surface were calculated from ECMWF 6-hourly Re-Analysis (ERA) dataset covering the period 1979-1993 and used as surface forcing for the hydrodynamic model: The Lebanese Shelf Model (Kabbara et al. 2006).

Ocean colour radiometry

Ocean colour radiometry has been successfully applied for the retrieval of phytoplankton biomass indices such as chlorophyll-a concentration, and other water quality parameters (turbidity, Secchi disk depth, etc.). Sensors originally designed for land observations, like Landsat’s thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+), have proven to be very useful for assessing coastal and Estuarine systems primarily because of their higher spatial resolution (30 m, or half that in panchromatic mode). Water quality in the coastal area of Tripoli (Lebanon) was assessed using SeaWiFS data (Kabbara et al., 2006). Significant pigment concentrations are seen along the coast. Localized areas of high production are due to pollution from human activities.

Data assimilation and the use of satellite data

Satellite data represent by far the largest volume of data used in the European Centre for Medium-Range Weather Forecasts (ECMWF) data assimilation system. Monthly means of wind stress, heat and water fluxes on the sea surface were calculated from ECMWF 6-hourly Re-Analysis (ERA) dataset covering the period 1979-1993 and used as surface forcing for the hydrodynamic model: The Lebanese Shelf Model (Kabbara et al. 2006).
Indicators and Aspects of Hydrological Drought in Lebanon

Precipitation:
It is clear that the major precipitation trend is descending and the first decline in precipitation started in the early 1980s. Before that time, the average precipitation rate was 1043 mm, and it decreased to 917 mm (up to 2006), which is equivalent to 12%. Rainfall intensity was also assessed through graphic illustrations of data adopted from TRMM (Tropical Rainfall Mapping Mission). The average number of rainfall peaks was <15 peak/year and 24 peaks/year for the periods before and after the 1980s, respectively. Moreover, the average rate of torrential water from these peaks was between 15 and 20 mm/day before the 1980s and 18–22 mm/day after it.

Springs
By counting the number of springs from the topographic maps produced in 1963, and in 2005 from field survey data using the same topographic maps, a 50–55% decrease in the number of springs was observed. The overall trend of discharge from these springs is clearly descending and abruptly changed in the last three decades. The average discharge of the Lebanese rivers was 246 million m³/year in 1965, this decreased to about 136 million m³/year in the year 2005, which is equal to 40% drop over 40 years.

Rivers
There are 12 permanent watercourses (rivers) in Lebanon. Additionally, there are about 60 major temporary streams (Wadis) that capture rain water for a limited time interval (few months). These watercourses (both permanent and temporary) have witnessed an obvious decrease in water level, and some have lost about 50% of their normal level. The average discharge rate of the Lebanon river was 246 million m³/year in the year 1965, this decreased to about 136 million m³/year in the year 2005, which is equal to 23% drop over 40 years.

Springs
Be counting the number of springs from the topographic maps produced in 1963, and in 2005 from field survey data using the same topographic maps, a 50–55% decrease in the number of springs was observed. The overall trend of discharge from these springs is clearly descending and abruptly changed in the last three decades. The average discharge of these springs was 154 million m³/year, and reduced to 45 million m³/year between 1965 and 1990. This is equivalent to 50% drop over 35 years.
Groundwater:
In the Cenomanian aquifer, 193 water wells were investigated from four different regions to induce the change in water yield between two dates 1984 and 2005. For the Jurassic aquifer, 122 wells were investigated and also in another four regions in Lebanon. For both aquifers, an obvious depletion in the pumped water was recorded, notably in the coastal regions, thus reflecting, in addition to climate influence, the human over exploitation. The average discharge from wells of the Cenomanian aquifer in 1984 in the four studied regions was 29.5 l/s. It decreased to 20 l/s. While in the Jurassic aquifer, the discharge decreased from 31.75 to 23.5 l/s, for 1987 and 2005, respectively. Accordingly, the variation in the level of water table has several values and differs from one area to another. However, the general estimates were adopted as an average from different water wells in Lebanon. For example, the average drawdown in water table was reported as 20–25 and 5–10 m in the Cenomanian and Jurassic aquifer; respectively, in the area of the Litani River watershed in the last fifteen years.

Lakes and Reservoirs
In addition, the lake of Qaraoun has witnessed an obvious decrease in its area. The average area was 5.14 km² in the period before 1990 and thus decreased to 4.35 km² after 1990 until 2005, which is equivalent to 15% of the normal area of the lake. Out of 234 known local reservoirs in Lebanon during 1963, only 48 are still in use until 2005. While some other ones remain, no water storage has been noticed among these reservoirs, except few days after each rainfall period.

Snow Cover
Lebanon, the country with about 60–65% of mountainous terrain, receives a considerable amount of snow that covers about 20% of its area. Before 1990s, dense snow often covered more than 2,000 km² of the Lebanese mountains and averaging about 2,000 km². Lately, it declined to less than 2,000 km² with an average area of about 1,925 km². In addition, the average time in which dense snow remains on mountains before melting also decreased from 110 days to less than 90 days.
Quarries: Assessment of quarries impact using Remote Sensing techniques

Remote Sensing was used to assess the impact of abandoned and degraded quarries on land resources in Lebanon. Multi-temporal analyses of Landsat images and Ikonos revealed that between 1996 and 2005, the number of quarries increased from 711 to 1278 and the quarried land area increased from 2875 to 5283 ha.

Quarrying activities affected land cover including forests causing forest fragmentation and land degradation. Unmanaged practices lead to soil erosion and loss of biodiversity in addition to the damage to the air and groundwater quality. Sand excavation in the middle of fruiting pine forest affected the anthropological landscape created by positive human intervention since decades. Gravel extraction left the land with steep slopes negatively affecting the potential spontaneous revegetation.

Modelling the risk of abandoned quarries on land resources in Lebanon using parameters like slope, climate, previous vegetation cover, Land Use and soil types in the surrounding areas, rock infiltration promoting the leaching of pollutants to the groundwater and surface water resources revealed the large number of quarries having moderate and high impact.

A total of 105 (8.2%) of the detected quarries have a high negative impact on surrounding areas equivalent to a maximum damaged zone of 8247 ha. On the other hand, a total of 842 quarries (65.9%) had a moderate effect on 66131 ha of neighboring lands. From 1278 existing quarries, only 25.9% of them had a low negative effect on surrounding natural resources.

It is difficult to assess the polluting damage from abandoned quarries during the post-exploitation period unless a clear source of pollutant emission is observed in the vicinity. The negative impact was equally observed in the Mount Lebanon and Anti Lebanon mountain range indicating the vulnerability of forest areas and bare lands in terms of vegetation risk and water basins. The current practice of quarries management policy in Lebanon needs reconsideration.
Sat. 78 - ENVISAT interferogram between two images one in 30/12/07 and the other in 31/03/08. The orientation is in the geometry of the satellite.

Land slides and bad lands in Saidet Nourieh area – North Lebanon

Sat. 80 - ENVISAT interferogram showing landslides in Naher Ibrahim. The color fringe is an evidence of a movement.

Sat. 79 - ENVISAT interferogram between two images one in 30/12/07 and the other in 31/03/08. 3 months no evidence of creeping Yamouneh - Bekaa

Sat. 81 - ENVISAT interferogram between two images one in 14/11/07 and the other in 01/07/08. Evidence of creeping in 8 months Yamouneh - Bekaa

Interferometric Synthetic Aperture Radar (InSAR) uses active sensors emitting a pulse of energy (from a satellite) and recording its return, from the ground, at the sensor. By bounce signals from a radar satellite off the ground, digital elevation model (DEM) maps can be produced that will show the ground terrain. Two images of the same place are taken at different times then merged, forming a map called an interferogram.

The merging of the two images shows the ground displacement (if any) that would indicate any movement that has occurred between the time the two images were taken. In this way, one can determine if a hillside, for example, has moved.

This displacement is represented into colour fringes interferogram between two images one in 30/12/07 and the other in 31/03/08.
Soil-water erosion, a serious problem in Lebanon

Annual soil loss rates due to water erosion are high, reaching about 70 tons/ha in mountainous areas, which constrain severely any possibility of carrying a healthy vegetal cover. This indicates the extent of the water erosion problem, which threatens an integral element of natural resources in this country, i.e., soil.

Detection of Soil-water erosion by remote sensing

Erosion models are a suitable means for the simulation of present (actual), past, and future erosion states. However, in order to obtain accurate results in a limited period of time for a large area of interest, the acquisition of data for the models is a bottleneck. Field measurements can only take place at certain discrete spots, and have to be extrapolated using grid sampling or geo-statistical methods such as Kriging to generate data artificially for the whole studied area. However, some problems arise with these approaches; they normally require a large number of soil samples, and soil parameter determinations and their analysis concerning erosion relevant parameters, i.e., soil type, soil moisture, surface roughness, grain size, organic matter content, soil structure, mineralogical soil constituents, are not suitable for interpolation between point measurements since they are discrete and not continuous variables, and are therefore ideally collected using remote sensing techniques.

During the last two decades, interaction between electromagnetic radiation (EMR) and soil properties has been derived using optical remote sensing. This interaction seems useful for detecting eroded areas. In the visible portion of the EMR spectrum (480–700 nm), sheet erosion can be detected through conventional broadband sensors (SPOT, Landsat TM, etc.) via the appearance of humus mollic horizon, usually darker than underlying soil horizons.
Coastal Erosion

The Lebanese coastline shows a linear population growth of 22.13% mainly due to the establishment of several installations during the last forty years. This extension of the artificial shore was done at the expense of natural shores which are becoming increasingly rare. 41% of the littoral is artificialized. This depends mainly on the economic activities related to the sea (fishing ports, trade or recreational facilities, dams, and great urban developments), on the pressure exerted on the littoral (population, land use), and on the type of the coast (weak on the coasts with cliffs, more important on the sandy coasts).

The shore is currently affected by an important erosion of 45.24%. One of the reasons is that Lebanese coast endures massive winter storms and high speed currents in a North North-Eastern direction. These two factors constitute risks for sandy beaches.

The velocity of the currents necessitated the establishment of large blocks used to protect the beach from natural erosion.

These risks were aggravated by the sand extraction from the beaches during the war and undoubtedly by the reduction of the sediments contributions since the construction of the barrier of Aswan. The recent embankments (ports, the international airport of Beirut and the urban installations and equipment) and certain sand pumping from nearby sea-beds are also factors affecting the littoral hydrodynamics.
Characteristics of satellite data

<table>
<thead>
<tr>
<th>Satellite name</th>
<th>Type of images</th>
<th>Resolution</th>
<th>Year</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVISAT ASAR</td>
<td>Radar</td>
<td>20 m</td>
<td>2007-2009</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>Ikonos</td>
<td>Multispectral</td>
<td>80cm</td>
<td>2005</td>
<td>Digital Globe</td>
</tr>
<tr>
<td>Russian satellite ERS-1</td>
<td>Photography</td>
<td>2 m</td>
<td>1994</td>
<td>ISS/Transport</td>
</tr>
<tr>
<td>Landsat ETM+</td>
<td>Thematic Mapper Multiplet</td>
<td>30m</td>
<td>2000</td>
<td>USGS</td>
</tr>
<tr>
<td>TERRA MODIS</td>
<td>Multispectral</td>
<td>250m</td>
<td>2004</td>
<td>NASA</td>
</tr>
<tr>
<td>TERRA Awar</td>
<td>Multispectral</td>
<td>30m</td>
<td>2003</td>
<td>NASA</td>
</tr>
</tbody>
</table>

Source of Data
- Satellite images
 - National Council for Scientific Research
 - Directorate of Geographic Affairs (D.A.G)
- Aerial photos
 - Directorate of Geographic Affairs (D.A.G)
- Maps
 - Ministry of environment
 - General Directorate of antiquities
 - National Council for Scientific Research
- Statistical information
 - Central Administration for Statistics
 - Council for Development and Reconstruction

Characteristics of satellite data

- Satellite name
 - ENVISAT ASAR: Radar, 20 m, 2007-2008, European Space Agency
 - Ikonos: Multispectral, 80cm, 2005, Digital Globe
 - Russian satellite ERS-1: Photography, 2 m, 1994, ISS/Transport
 - Landsat ETM+: Thematic Mapper Multiplet, 30m, 2000, USGS
 - TERRA MODIS: Multispectral, 250m, 2004, NASA
 - TERRA Awar: Multispectral, 30m, 2003, NASA

DAIL. 1970. Directoire de Geographic Affairs (DGA), Lebanon Army. 1970
Daneshpour T (1986) View on the genesis of Rendzinas soils of Lebanon Lebanese science Bulletin, 23(2) 85-92
Ministry of Agriculture (MoA), Directorate of Rural Development and Natural Resources (DORDNR). 2003. National Forest and Tree Assessment and Inventory-topIC/FAO/Beirut: Food and Agriculture Organization of the United Nations MOA.